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Abstract—Strain-softening and strain-localization in cementitious and ceramic materials can be
described by using a cohesive crack model, with closing forces at the crack tip, which represent
plasticity, inclusion interlocking, fibre bridging and any kind of non-linear behaviour. In the present
paper, the cohesive crack model is extended to mixed mode propagation and an experimental
confirmation is provided by testing four-point shear specimens of concrete. A constant crack mouth
sliding displacement rate is imposed, so that is is possible to control and detect the snap-back load
vs deflection branches. The behaviour of the larger specimens is found to be the brittler. On the
other hand, the brittleness in the numerical simulations is controlled through the crack length,
which is certainly a monotonic increasing function during the irreversible fracture process. The
experimental load vs deflection diagrams as well as the experimental fracture trajectories are captured
satisfactorily by the numerical model. The mixed mode fracture energy results tend to be of the
same order of magnitude as the Mode I fracture energy %, each elementary crack growth step
being produced by an opening mechanism along the curvilinear trajectory. This is particularly true
for the larger specimens, where energy dissipation due to friction and interlocking is negligible if
compared with the energy dissipated by separation.

1. INTRODUCTION

In cementitious and ceramic materials strain-softening prevails over strain-hardening and
strain-localization can be taken into account using a cohesive crack idealization. According
to the cohesive crack model, the non-linear structure and crack behaviour can be described
by means of cohesive closing forces in the process zone, which represent plastic flow,
aggregate interlocking, fibre bridging, etc.

The cohesive crack model was originally proposed by Barenblatt (1959) and, indepen-
dently, by Dugdale (1960). Later, it was reconsidered by Bilby er al. (1963), Willis (1967)
and Rice (1968). More recently, the cohesive crack model was reproposed, with some
modifications, by Wnuk (1974)—the Final Stretch Model—and by Hillerborg er al.
(1976)—the Fictitious Crack Model. The latter was applied mostly to concrete-like
materials and numerically implemented in a finite element program.

In the present paper, the cohesive crack model is extended to mixed mode propagation,
when the crack is loaded by opening and sliding forces and it turns aside at each step. For
Mode I (Carpinteri, 1989a,b; Carpinteri and Colombo, 1989), and for mixed mode, the
shape of the structural response changes substantially by varying size-scale and keeping the
geometrical shape of the structure unchanged. For size-scales larger than a threshold value,
a snap-back instability appears, when the plastic zone is still absent and the slow crack
growth has not yet occurred. Asymptotically, the snap-back instability coincides with the
LEFM instability and the snap-back load can be provided by the simple LEFM condition
K = K¢, in Mode 1, or by the Maximum Circumferential Stress Criterion (Erdogan and
Sih, 1963): F(K;, K;)) = K¢, in mixed mode.

An experimental program consisting of 27 four-point shear specimens of concrete was
carried out, with the sizes scaled in the proportion 1:2:4. The loading machine imposed a
constant crack mouth sliding displacement rate, so that it was possible to control and detect
the snap-back branches. On the other hand, the snap-back branches can be captured
numerically only if the loading process is controlled by a monotonically increasing function
of the crack length. An example of such a function is provided by the “indirect displacement
control scheme” (Rots and de Borst, 1987). This technique uses a displacement norm as
controlling parameter. On the other hand, as a monotonically increasing function of the
crack length, it is possible to use the crack length itself, in Mode I (Carpinteri, 1984;
Carpinteri and Fanelli, 1987) as well as in mixed mode (Carpinteri and Valente, 1988 ;
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Carpinteri et al., 1989). Such a technique, called the “‘crack length control scheme”, will
be proposed in the present paper.

Finite element crack propagation requires a continuous modification of the mesh.
Whereas for Mode I (Carpinteri, 1989a, b), only node untying can be applied to simulate
crack growth, for mixed mode a topological variation is performed at each step of the
interelement crack propagation, following an automatic procedure which is similar to that
proposed by Wawrzynek and Ingraffea (1987).

2. EXPERIMENTAL PROGRAM

Twenty-seven four-point shear specimens of concrete were tested. The quantity of
Portland cement was 350 kg m~?, while the water/cement ratio was taken to be 0.5. The
maximum diameter of the alluvial aggregates was D, = 10 mm. The average compressive
strength obtained from six cubic specimens with 16 cm sides was 33.7 MPa. The specimens
were cured for 90 days at 20°C and 65% relative humidity.

The geometrical features of the specimens were as follows (Figs 1 and 2):

depth b = §, 10, 20 cm;
span/=4b;

thickness 1 = 10 cm ;
crack depth a = 0.25;
¢/bratio =04, 0.8, 1.2.

The specimen geometry, support configuration and mechanical properties are provided in
Table 1.

The testing apparatus is shown in Fig. 3. The MTS machine (max. load = 10° N)
imposed a constant crack mouth sliding displacement rate equal to 2.5 x 10~ *m s~ ' through
the displacement transducer (Hottinger Baldwin DD1). A similar transducer recorded the
load vs crack mouth opening displacement diagram, together with the load vs loading point
deflection diagram for the support closest to the center.

In addition, four specimens of size 10 x 10 x 80 cm, were tested in three-point bending
according to the RILEM Recommendation (1985) : the Mode I fracture energy was found
tobe ¥~ 100 Nm ..

3. NUMERICAL COHESIVE CRACK MODEL

The principle of virtual work can be used as the integral statement to formulate the
elastic-softening problem in terms of the finite element approximation :

J de'odV = J duTFdV—+-J du"pds, (1)
Vv Vv S

where 6" =[0,, 6,, 6., Ty, T,z, Tx;] is the stress vector, de' is the vector of incremental virtual
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Fig. 1. Four-point shear specimen.
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Fig. 2. Different specimen sizes selected for the experimental investigation.
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Fig. 3. Testing apparatus.
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Table 1. Specimen geometry, support configuration and mechanical properties

Number b ! t a c/b Maximum load
Specimen of average,
size specimens (mx10-? P, (dN)
A 3 5 20 10 1 0.4 1190
3 5 20 10 1 0.8 1222
3 5 20 10 1 1.2 1370
B 3 10 40 10 2 0.4 2027
3 10 40 10 2 0.8 1980
3 10 40 10 2 1.2 1535
C 3 20 80 10 4 0.4 3493
3 20 80 10 4 0.8 3446
3 20 80 10 4 1.2 3700
R, =337 MPa o, 2 MPa
E = 27,000 MPa %~ 100Nm™!

strain, F' = [F,, F,, F,] is the vector of body forces acting per unit volume, du” = [du, dv, dw]
is the vector of incremental virtual displacement and p' = [p,, p,, p,] is the vector of
tractions acting per unit area of external surface S. Equation (1) is the weak form of the
equilibrium equations and is valid for linear as well as for non-linear stress—strain constitutive
laws.

According to the cohesive crack model, the process zone near the crack tip can be
represented by means of closing tractions p. acting on both the crack faces. Therefore, the
last term in eqn (1) can be decomposed as follows (Fig. 1) :

J du’pdS = J du’p, dS+f du’pds, 2
s s, s-5

¢

where S, is the process zone, i.e., the crack surface where the cohesive forces are active. A
local reference system, with Z-axes oriented as the outward normal to the positive side of
the crack surface, is assumed. N is the transformation matrix from the global to the local
reference system, varying point by point on the crack surface. Assuming a linear softening
constitutive law, the traction versus displacement relationship can therefore be written
(Fig. 4):

p. = p.+N'LNut —u"), €))

where p, is the ultimate tensile strength in vectorial form, N is the transformation matrix
from the global to the local reference system, varying point by point on the crack surface,

Fig. 4. Mixed mode cohesive crack propagation.
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L is the cohesive constitutive matrix in a local Cartesian system, the index+ refers to the
positive side of the crack, while the index — refers to the negative one.
From equilibrium considerations across the crack surface, it is possible to write :

pF=—p, pi=-p,, SS=8;=8)2 4)

The first term in the right-hand side of eqn (2) can be written :
f dqucdS=J. dutTpf dS+J‘ du~Tp; dS—%:( du*"N"LN(@u* ~u")dS
5 s¢ s: sF

—-j du~"NTLN@* —u")dS. (5)
s

<

The last two terms in eqn (5) can be represented as follows:

[ Y s N S LS

The principle of virtual work, eqn (1), can be developed according to eqns (2), (5) and (6):

j‘ dsTch=J duTFdV-f-J dqudS—}-j du*Tp dS+j du~Tp; dS
v v S-S, s¢ s;

du*'[NT 0 L LN o1{u*
+Lc/2{du}[0 NT][..L L:][O N]{“_}ds. N

Subdividing the domain in a finite number of elements and expressing the internal
displacements by means of locally based shape functions H, it is possible to write:

u(x, y,z) = H(x, y, 2)u. &)
From the derivation of eqn (8), the strain versus displacement relationship can be obtained :
¢ = Bu. C))

Selecting an appropriate constitutive law for the uncracked zone, the stress versus strain
relationship appears as follows ;

o =D(e—gy)+0,. (10)

Substituting eqns (8), (9) and (10) in eqn (7), and indicating by “‘¢” the generic element, it
is possible to write:

wle ok (LI el E T )

X {:ﬁ} = duT(Z j (HTF-—BT00+BTD30)dV)+duT(Z H'p dS)
14

e e oS-35

+du”(2f H'p; dS)+du'T<Zj H'p, dS). an
st S

€ [4



Mixed mode fracture of concrete 1145

Since :
ut}cfu}, {(w}cfu}, {du'}c{da, {du"}c{du}, (12)
an assemblage procedure can be carried out:
(K—Cu=F +F+F; +F,, (13)
where

K = stiffness matrix,
C = softening matrix,
F,, F,, F} F; = loading vectors,

(K —C) = effective stiffness matrix.
Neglecting the tangential cohesive tractions, the constitutive matrix L becomes :

00 0
L=|0 0 0] (14)
0 0 Iy

Only the component of the mutual displacement normal to the crack surface, w (crack
opening displacement), is taken into account. The remaining components are disregarded.
The scalar quantity /55 is assumed as follows:

Iy = fv— for 0<w<w, (15a)
l;5=0, for w=w, (15b)

where ¢, is the ultimate tensile strength of the material and w, is the critical value of the
crack opening displacement w. For crack opening displacements greater than the critical
value w,, the interaction forces disappear, and both the crack surfaces are stress-free.
During the irreversible fracture process, the crack opening displacement w is found to be a
monotonic increasing function of time.

At the first step the cohesive zone is absent, matrix C vanishes and matrix K is positive
definite. A linear elastic solution can be found, giving the position and orientation of the
growing crack. The crack surface S, starts propagating by a pre-defined length AS.. Such
an incremental length is chosen so small that matrix (K— C) remains positive definite, and
the maximum cohesive crack opening displacement is less than w.. Equation (13) can be
solved for two right-hand side vectors:

(K—C)u] = FIv'*'Fsa (163)
(K—CQu, =F; +F,. (16b)

At the fictitious crack tip, the stress vector can be written :

[ax’ ayaT]T = A’[axs O'y,T]T+[0'x, Uy, T]g (17)

where A is the external load multiplier.
In order to allow the crack propagation, the maximum principal stress, corresponding
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to the stress vector (17), has to be equal to the tensile strength of the material :

o.+o, 1
'2 : +2'«/(O'.\.—O'),)2+4‘52=O'u. (18)

Substituting eqn (17) in eqn (18), it is possible to compute the external load multiplier A.
The angle between the x-axes and the normal to the principal plane, related to the principal
stress (18), is given by :

—ltan"‘[ 2z 19
*=3 .—0,] (19)

The subsequent crack branch will occur in the principal plane denoted by eqn (19).
At the following steps the same procedure is repeated, without moving the real crack
tip, until one of the following conditions is verified.

(1) The crack opening displacement at the real crack tip reaches its critical value w,. In
this case, the real crack tip moves and the cohesive crack surface S, shrinks until the
crack opening displacement at the real crack tip is less than w,.

(2) Matrix (K—C) in eqn (16) becomes positive semi-definite. In this case, the stress vector
at the fictitious crack tip can be written:

[0.,6,,7]" = DBu—Dg,+a,. 20)
Equation (16) becomes :
(K—Cu=AMF,+F)+F; +F,. 21

Substituting eqn (20) ineqn (18), a non-linear equation in uis obtained. The n equations
(21) and eqn (18) represent a system of n+ 1 equations in #+ 1 unknowns (u, 1). Since eqn
(18) is non-linear, the solution is computed using the Newton—Raphson method.

4. DISCUSSION

With reference to the experimental program described in Section 2, the maximum
loading capacity Pcoygs can be obtained according to the previous cohesive crack model.
On the other hand, the maximum load P gry of brittle fracture can be derived from the

)
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5 I & %
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STRAIN, € OPENING, w

(a) {b)

Fig. 5. Stress vs strain and stress vs crack opening displacement constitutive laws.
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application of the Maximum Circumferential Stress Criterion (Erdogan and Sih, 1963):

dO'g _

@ = 0, G/ 2nr = ch = gFE (22)

Stress intensification is produced in both the crack tip regions and the stress intensity factors
for Mode I and Mode II can be expressed respectively as:

P [ ac
K, = b2 fI<B5 B’ E>’ (232)
P [ ac
Ky = b2 fu(g, E, E)’ (23b)
Jiand f;; being the shape functions.
The angle 6, of crack branching is provided by the following equation :
Sfisin@y+f;(3cosf,—1) =0, (24)
whereas the mixed mode crack instability is predicted by the condition:
0 6, 3. .
Pierm cos~22 |:fI cos? 70 -3 fu sin 00] =tb"?Kc. (25)

The values of the ratio Pooygs/PLeru are represented in Fig. 6 against the dimensionless
size 1/sg. A transition is evident towards LEFM by increasing the size-scale of the structure.
For the brittler geometry, ¢/b = 0.4, the transition appears to be faster, and already for
bo,/%r = 2x 10* or sz = 5x 1073, the asymptotical LEFM condition is achieved. In this
case, the size of the cohesive zone is negligible with respect to the size of the zone where the
r~ "2 LEFM stress singularity is dominant. For the more ductile geometry, ¢/b = 0.8, the
experimental results present the same trend as that of the numerical ones.

For ¢/b = 0.8, the total load versus loading point deflection diagrams are plotted in
Fig. 7a, b, for the cases b = 5 and 20 cm respectively. The mixed mode cohesive crack model
describes both the experimental curves satisfactorily. The size » = 20 cm (Fig. 7b) produces
snap-back instability in the experimental as well as in the numerical curve. The area enclosed

=
o
n-_l
~»
T
o
n_o

x/; x Experimental data after

20ex ™ Carpinteri et al.(1989)

0 1 1 1 i
0 5 10 15 20 /s,

DIMENSIONLESS SIZE, ba, /¥ (10%)

Fig. 6. Size-scale transition towards mixed mode brittle fracture (LEFM instability).
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Fig. 7. Experimental load vs deflection curves and numerical cohesive crack simulation for ¢/b = 0.8.
(a) b= Scm; (b) b =20 cm.

between the numerical curve and deflection axis is approximately equal to the product of
the Mode I fracture energy % and the total fracture area, and represents the amount of
energy dissipated in the localized fracture zone. The amount of energy dissipated by
punching at the supports was deliberately neglected, assuming ascending elastic branches
consistent with the elastic modulus of the material.

It is remarkable that the application of the usual Mode I fracture energy %y only was
able to provide consistent results. It was unnecessary to introduce additional fracture
toughness parameters, like, for example, the Mode II fracture energy 4F (Rots and de
Borst, 1987 ; Bazant and Pfeiffer, 1986). As a matter of fact, the mixed mode fracture energy
has a value approximately equal to Mode I fracture energy %y, each elementary crack
growth step being produced by a Mode I (or opening) mechanism along the curvilinear
trajectory.

The sequence of the finite element meshes utilized for the case b = 20 cm, ¢/b = 0.8 is
reported in Fig. 8. The trajectory of the finite element rosette reproduces the experimental
fracture trajectory accurately.

According to the cohesive model, the length of the process zone is not a constant. On
the contrary, it depends on the mechanical properties of the body at each step of the crack
growth. In the present example the real crack (complete disconnection) starts propagating
only at the thirteenth step, when the fictitious crack (cohesive interaction) is beyond one
half of the beam depth. On the other hand, at the twenty-second step, both fictitious and
real crack tip are close to the upper beam edge. The single steps are also indicated in the
diagram of Fig. 7b. For the same case, the subsequent deformed configurations are reported
in Fig. 9.
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step 3 step 7

9
step 11 step 14
step 18 step 22

Fig. 8. Finite element remeshing for ¢/b = 0.8, b = 20 cm.

A real mixed mode crack propagation developed only in the specimens with the ratios
¢/b = 0.4 and 0.8, whereas for ¢/b = 1.2 a bending failure at the supports prevailed. For
b =5, 10, 20 cm and ¢/b = 0.4, 0.8, all the experimental crack trajectories are reported in
Fig. 10 (for b = 5, 10 cm it was preferred to group all the trajectories on one side). The
statistical dispersion appears to be independent of specimen geometry and size, and to be
of the same order of magnitude as that of the aggregates. The trajectories simulated
numerically (thick dashed lines) are in good agreement with the experimental ones.
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STEP 11 STEP 14

STEP 18 STEP 22

Fig. 9. Subsequent deformed configurations for ¢/b = 0.8, b = 20 cm. Displacement magnification
factor: 300.

5. CONCLUSIONS

(1) The brittleness in the experiments is controlled by imposing a constant crack mouth
sliding displacement rate (monotonic increasing function of time).

(2) The brittleness in the numerical simulations is controlled through the crack length,
which is certainly a monotonic increasing function during the irreversible fracture process.

(3) The mixed mode fracture energy is found to be of the same order of magnitude as
the Mode I fracture energy %, each elementary crack growth step being produced by a
Mode I (or opening) mechanism along the curvilinear trajectory. This is particularly true
for the larger specimens, where energy dissipation due to friction and interlocking is
negligible if compared with the energy dissipated by separation.

(4) The trajectories simulated numerically are in good agreement with the experimental
ones. The latter show a statistical dispersion which is independent of specimen size and of
the same order of magnitude as that of the aggregates.
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b=Scm.

o/b=04

b=5cm
c/b=0.8

b=10cm.
¢b=08

Fig. 10. Experimental and numerical crack trajectories for-b = S, 10, 20 cm and ¢/b = 0.4, 0.8.

(Continued overleaf.)
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b=20cm.

&/b=04

b=20cm
o/b-0s

Fig. 10. (continued).
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